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ABSTRACT
In this paper we consider the problem of recommending
modes of transport to users in an urban setting. In particu-
lar, we build on our past work in which a general framework
for activity recommendation is proposed. To model the per-
sonal preferences and habits of users, the framework uses a
sequence-based approach to capture the order as well as the
context associated with user activity patterns. Here, we ex-
tend this work by introducing a machine learning approach
to learn and take into account the natural variations in the
regularity and repetition of individual user behaviour that
occur. We demonstrate the versatility of our recommenda-
tion framework by applying it to the transport domain, and
an evaluation using a real-world (mode of transport) dataset
demonstrates the efficacy of the approach.

1. INTRODUCTION
As digital technologies become ubiquitous in society, many

aspects of our lives can now be passively recorded in digital
formats. For example, locations visited, media consumed,
physical activities performed, and modes of transport taken
by users can be recorded using mobile devices. Such record-
ings can be used to generate detailed traces (or lifelogs) of an
individual’s life and can help in the design of bottom-up solu-
tions to improve the quality of life for individuals, the urban
environment and the efficiency of cities’ operations systems
[47]. Our work belongs to an emerging category of real-time
recommender systems facilitated by such data, which are ca-
pable of generating recommendations at the right time and
in the right way for a given user and context.

In previous work, we proposed a general framework for
sequence- and context-based activity recommendation [23],
where activities can take the form of daily tasks to complete,
for example, or which music or web sites users should listen
to or visit. In this paper, we apply our approach to recom-
mend the next mode of transport that users should take in
their journeys. This can help users to better plan their days,
facilitate travel, and help service providers to better cater
to the needs of the community.

A related application domain is mobile personal assis-
tants, such as Google Now and Microsoft Cortana, which
seek to show users the right information at the right time,
without any query input [1, 19]. For example, these ap-
plications proactively show the estimated time of travel to
home at the end of a working day; however, when using
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these applications, users need to preselect a particular mode
of transport in advance. We believe that the utility of such
applications would be significantly enhanced if the most suit-
able modes of transport to take were also recommended to
users, and the provision of such a recommender system pro-
vides a practical rationale for this work

An inherent characteristic of the kinds of data captured by
digital devices is their oftentimes inherently sequential na-
ture, i.e. activities are performed in a particular order, and
each activity in turn may influence the subsequent activities
to be performed. Moreover, such activities are typically as-
sociated with multiple features or contextual data, such as
location, time, weather, etc. It seems clear that the order
encoded in such sequence data, along with the rich contex-
tual data available, capture important information when it
comes to modeling the preferences and personal habits of
users. Indeed, it is known that in many instances users
perform activities in patterns, sometimes consciously while
often without conscious thought.

Traditional recommender systems, however, typically do
not consider the order in which users perform activities and
there is little work in urban computing which consider se-
quences and contextual data simultaneously. In this paper,
we leverage such sequences and contextual data and show
how they can be effectively used for recommending modes
of transport to users. The main contributions of this work
can be summarised as follows:

• A novel content-based approach for recommending the
next activity (i.e. mode of transport) to users.

• Extending the recommendation framework in [23] by
proposing new approaches to extract and match subse-
quences drawn from the past activity patterns (time-
lines) of users.

• A machine learning approach to learn the optimal sub-
sequence length to be used when matching current and
past subsequences of user activity patterns. In particu-
lar, given the variations in the regularity and repetition
of user behaviour, our approach learns a personalised
subsequence length for each user.

• The application of our recommendation framework to
the transport domain. Experiments using a mode of
transport dataset demonstrate that good quality rec-
ommendations are made for users, irrespective of their
transport usage patterns, and likewise for modes of
transport which are more or less common in the data.

The paper is organised as follows. Related work is dis-
cussed in Section 2. Sections 3 and 4 present our recommen-



dation framework and classification approach, respectively.
A comprehensive evaluation of our approaches is performed
in Section 5, and conclusions are drawn in Section 6.

2. RELATED WORK
This work presents a recommendation approach which

models both sequence and contextual information in order to
generate activity recommendations for users. While related
work in the urban computing [4, 47, 53] and recommender
systems [3, 5, 31] domains exist which consider sequence and
context individually, there appears to be little work which
considers both together. In what follows, a review of some
of the relevant related work in these areas is presented.

In urban computing research, one approach to capture
sequence and geographical hierarchies in location trajecto-
ries is presented in [25], in which a hierarchical-graph-based
model is described. This is further enhanced in [52] by mod-
eling location popularity and user experiences to mine popu-
lar travel sequences across users in a non-personalised man-
ner. Similarly, graph-based models have also been used to
capture travel sequences for collaborative itinerary recom-
mendation [43], i.e., recommending trips for a given start
time, destination and duration of trip. However, these ap-
proaches do not leverage the context information associated
with user’s visits to locations for modeling purposes.

A popular approach for modeling sequence data in general
has been Markov-based models. However, as the Markov as-
sumption does not hold in many cases (e.g. web navigation),
all-k th-order Markov models have been used [29, 14] to cap-
ture higher order information. Inline with this observation,
our recommendation approach does not rely on the Markov
assumption. Furthermore, popular kth-order Markov mod-
els, such as those used in [35, 6], consider elements of the se-
quence as atomic entities and are not suitable for sequences
of activities with multiple features or context. For other
approaches related to sequence-based web page and music
recommendation, see for example [7, 9, 20].

The important role of context has frequently been noted
in the literature. For example, Zheng et al. [44, 45, 46]
proposed algorithms based on collaborative filtering which
use location as context for recommending suitable activities.
In this regard, a user-location-activity ratings tensor is con-
structed from information extracted from users’ GPS trajec-
tories, associated comments and additional information such
as POIs, correlation between activities, etc. A collective ten-
sor and matrix factorization model is then used to predict
missing ratings or formulate the pairwise preferences of users
for location-activity pairs in order to generate ranked lists of
recommendations. An extension of this work using Higher
Order Singular Value Decomposition is presented in [38].
However, such tensor-based models and other approaches
to context-aware recommender systems [2, 40] do not cap-
ture sequence information. Moreover, context-aware recom-
mender systems are typically reactive in the sense that rec-
ommendations are made for the current context; e.g., activ-
ities are recommended to users given their current location.
In contrast, our approach is proactive as it recommends the
next activity given the current context, i.e., the recommen-
dation and the current context are temporally apart.

While capturing sequence information along with the con-
text in user models has been suggested [3, 46] to improve
recommendation, there are very few works which capture
sequence and context simultaneously. In [23], we presented

a content-based framework for recommending the next ac-
tivity to the user based on the past sequences of activities
performed and their associated features. We introduced
a two-level distance measure to assess the similarity be-
tween sequences. In this paper, we extend our framework
by introducing the concept of timeline matching and pro-
pose a classification approach to personalise matching for
each user. This year, another interesting approach to cap-
ture both sequence and contextual information is presented
[37]. This is achieved by modeling contextual information
as stochastic processes and representing user data as time-
series. The authors propose to capture temporal structure
and co-movements of contextual information as latent fac-
tors. Interestingly, this approach is also proactive as it pre-
dicts the future intentions of users.

In order to characterise sequences, it is essential the cap-
ture the regularity in sequence patterns. Most recommender
systems using sequences make use of n-grams to characterise
sequences; however, n-gram based metrics are better at cap-
turing repetition rather than regularity. In this work, we use
sample entropy, proposed by Richman and Moorman [32],
as a statistic to quantify the amount of regularity in data.
Sample entropy is a modification of approximate entropy [28]
and is closely related to Kolomogorov-Sinai (K-S) entropy
[16, 18]. This statistic relates to quantifying the rate of in-
formation generation in the time-series. Sample entropy has
been previously used to quantify regularity in physiological
and biological time-series such as heart rate from ECG and
brain activity from fMRI [11, 13, 27, 36]. However, to the
best of our knowledge, it has not been used for the purpose
of recommendation. Here, we use sample entropy based at-
tributes for numerical as well as for categorical sequences,
in order to build a learning model to personalise sequence
matching and making recommendations for individual users.

Finally, we note that much of the research relating to
modes of transport is on the classification of the mode of
transport being used based on GPS, accelerometer, GIS and
other assisted data [17, 34, 48, 49, 50]. Moreover, while ac-
tivity recommendation is an emerging area of research, espe-
cially in location-based social networks [4], the focus of this
work (recommending modes of transport for users to take in
their journeys) remains a largely unexplored task.

3. RECOMMENDATION APPROACH
In this section, we formulate the problem of activity rec-

ommendation. Here, the activities under consideration are
modes of transport and the objective is to recommend to the
user the next mode of transport to take in their journey. We
present our content-based recommendation algorithm along
with the concept of matching unit to better capture the sim-
ilarities between users’ current and past activity patterns.

3.1 Problem Formulation
Our work is motivated by the assumption that people tend

to repeat similar patterns of activities under similar circum-
stances. For example, a given user might have a habit of
travelling by bus to a movie theatre on Saturday evenings,
followed by dinner and commute by taxi to home. In such
patterns of activities, the order is critical to the meaning
of the sequence; for example, commuting to home followed
by dinner is semantically different from dinner followed by
commute to home. It is then important to detect similar
patterns of activities in the user’s past sequences for effec-



Train, 08:19, 28 mins, (53.38N, -6.07W), (53.35N, -6.25W)

Walk, 8:47, 9 mins, (53.31N, -6.21W), (53.30N, -6.22W)

Bus, 8:37, 10 mins, (53.35N, -6.25W), (53.31N, -6.21W)

ao1 ao3

Figure 1: An example timeline consisting of three activity
objects showing a commute from Howth to UCD in Dublin.

tively inferring the next activity that the user is likely to
perform. Moreover, a critical determinant for inferring the
next activity to perform is the surrounding context. For ex-
ample, features such as the time of day, location and weather
can determine if the user takes a bus or bike as the mode of
transport. The circumstances impacting the activities can
be captured through a set of features, f1, ... , fm, associ-
ated with each occurrence of an activity. A key feature of
our work is that the sequence as well as the features associ-
ated with previous activity occurrences are both taken into
consideration to recommend the next activity to the user.

3.2 Activity Timeline
We introduced the concept of an activity object and an

activity timeline in [23]. An activity object refers to a single
occurrence of an activity and consists of a set of features
describing the activity or the context surrounding that par-
ticular occurrence of the activity. In this work, an activity
refers to the act of taking a mode of transport.

When the set of activity objects that are performed within
a time interval are arranged in a chronological order, the
log of user activities represents a user activity timeline (or
timeline for short). Formally, a user’s activity timeline T
is a chronological sequence of n activity objects that are
performed during a time interval δ:

T =< ao1, ao2, ..., aon > , (1)

where activity object aoi represents the ith activity object
performed by the user during δ (the duration between the
starting time of ao1 and the end time of aon). Further, each
activity object is characterised by a set of m feature values:

aoi =
{
v1i , v

2
i , ..., v

m
i

}
, (2)

where vji is the value of the feature fj in activity object aoi.
In particular, the first feature denotes the name of the activ-
ity object; examples of such names include bus, taxi, train,
etc. in the transportation domain and working, commuting,
socialising, etc. in the domain of daily activities performed
by users. The remaining features are domain dependent.

For example, Figure 1 shows an example timeline in the
transportation domain which is composed of three activity
objects. Each object is characterised by four features: name
(mode of transport, e.g. train, bus, walk etc.), start time,
duration, start geolocation and end geolocation1.

3.3 Recommendation Algorithm
A key step of the activity recommendation process is to

select past timelines that have similar patterns to the user’s
most recently performed activities.

For each user, the recommendation algorithm proceeds
as follows. The task is to recommend the next activity to
perform at a given point in time. Let aoc denote the current

1Start and end geolocations are represented by latitude and
longitude coordinates.

activity object, i.e. the most recent activity performed by
the user. A subsequence of activity objects, ending with
aoc, is extracted from the user’s timeline; this subsequence
is referred to as the current timeline, Tc. The number of
activity objects in Tc is given by the matching unit (mu).

For each previous occurrence in the user’s timeline of an
activity with the same name as aoc (e.g. train, bus, walk
etc.), a candidate timeline (Tj) of length mu is extracted
(see Figure 2). The subsequent activity object (denoted as
aojrec), which occurs immediately after Tj , is then recom-
mended and scored as follows. First, the distance

(
d(Tj , Tc)

)
between the candidate timeline and the current timeline is
computed using a two-level edit distance metric (see Sec-
tion 3.3.1). A score is then computed as per Equation 3:

Score(aojrec) = 1−
d(Tj , Tc)− min

Tp∈T
d(Tp, Tc)

max
Tp∈T

d(Tp, Tc)− min
Tp∈T

d(Tp, Tc)
, (3)

where T is the set of candidate timelines.
Given a set of recommended activity objects (one from

each candidate timeline), a list of activity names, ranked
in descending order by the sum of the scores of the recom-
mended activity objects in which they occur, is returned.

3.3.1 Distance between Timelines
For the purpose of determining the similarity between

two timelines T1 and T2, the two-level similarity algorithm
proposed in our earlier work [23] is used. This algorithm
first rearranges the activities to achieve the same activity
sequence and then aligns the values of the features of the
corresponding activity objects. In the first step, the edit
distance between the two timelines T1 and T2 is computed
as the minimum cost of edit operations needed to transform
the sequence of activities of T1 into the sequence of activities
of T2. The second step involves the alignment of the feature
values (i.e. start time, duration, start geolocation and end
geolocation) of the corresponding activity objects in the two
timelines. See [23] for further details on this approach.

3.3.2 Matching Unit
The matching unit has a critical role to play when finding

similar patterns of activities in timelines, since it determines
the length of the subsequences to be considered when cal-
culating the distances between them. As such, the optimal
matching unit for each user will differ, depending on the
degree of repetition and regularity of activities performed.

In our previous work [23], current and candidate timelines
were extracted on a daywise basis, i.e. timelines consisted
of all activity objects starting from the beginning of a day
and ending at the object with the same name as the current
activity object, aoc. We refer to this approach of matching
timelines as daywise matching. Here, we introduce two other
matching approaches, N-count and N-hours matching.

In the N -count matching approach, the N activity objects
in the timeline preceding the current activity object form the
current timeline (and likewise for candidate timelines). In
the N -hours matching approach, all activity objects which
occur during a specific timeframe before the current activity
object are included in the current timeline (and similarly
for candidate timelines). In this paper, due to limitations of
space, we focus on N -count matching since experiments have
shown that it outperforms the N -hours matching approach.
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Figure 2: Overview of the recommendation approach (using N -count matching with N = 4). Different modes of transport
(activities) in the user timeline are represented by coloured boxes.

4. LEARNING PERSONALISED OPTIMAL
MATCHING UNITS

One of the essential steps in our approach is timeline
matching, which requires the selection of a matching unit.
In the context of N -count matching, this translates into se-
lecting a value for N , i.e., the number of activities to be
included in the extracted current and candidate timelines.

While the optimal value of N can be determined empiri-
cally for each user, such an approach is unlikely to be feasi-
ble in practice. Thus, we present a supervised classification
approach to learn the optimal (from a recommendation ac-
curacy perspective) value of N , i.e. N ′, for each user. How-
ever, given the natural variation in the activity patterns of
users, learning an exact value for N ′ for each user may re-
sult in overfitting. Consequently, our proposed approach is
to learn a range of values N ′ within which N ′ is likely to lie
for each user. In this work, we consider three such ranges,
and the classification task is to learn the optimal range for
each user. Given a predicted range, N ′ is then set to a fixed
value from within this range.

4.1 Attribute Extraction
Following the classical learning paradigm, each user is rep-

resented by an attribute vector, which is used to train a
model to learn the optimal matching range. Attributes are
extracted from the timeline of each user, and are selected to
model the characteristics of each user’s activity patterns.

Timeline Decomposition. As described in Section 3.2, a
timeline T consists of a sequence of n activity objects, where
each activity object is represented by a set of m features, F .
F is the set of features that describe the context associated
with timeline activities. In order to extract attributes from
timelines, it is useful to also consider the timeline from the
perspective of each individual feature separately.

Thus, a timeline T can be decomposed into a set of m ∈ F
different feature-sequences, S1,S2, ...,Sm, one for each of the
m features, with each new feature-sequence consisting of n
elements. That is, given T =< ao1, ao2, ..., aon > and aoi ={
v1i , v

2
i , ..., v

m
i

}
, then T = {S1,S2, ...,Sm}, where Sz =

< vz1 , v
z
2 , ..., v

z
n > is the feature-sequence for the zth feature

of the activity object.

Linear Mapping of Feature Sequences. For some at-
tributes, each element vzi of a feature sequence Sz is given by
a single (1-dimensional) value (e.g. the feature activity dura-
tion). However, in the case of features start geolocation and
end geolocation, elements are represented by latitude and
longitude coordinates. For these features, we use Hilbert
space-filling curves [33] to convert a feature sequence of 2-
dimensional values to a feature sequence of 1-dimensional
values. It has been found that under most circumstances,

linear mappings using Hilbert space-filling curves outper-
form other mappings [21, 26] in preserving the locality be-
tween the elements.

4.1.1 Timeline Attributes
In order to learn the optimal matching ranges for users,

timelines are represented by a set of attributes. We consider
two sets of attributes which can be categorised as regularity-
based and k-gram based attributes as described below.

Regularity Attributes. In this category, we consider at-
tributes aimed at capturing the degree of regularity in the
timelines. In this regard, we use the regularity statistic,
sample entropy (SampEn) [27], from the domain of medical
data analysis. SampEn(p, r, n) for a time series with n el-
ements is defined as the negative natural logarithm of the
conditional probability that two sequences which are sim-
ilar (within a tolerance, r) for p points remain similar at
the next point, where self-matches are not included in cal-
culating the probability [32]. Regularity in the timelines is
measured from the perspective of each feature separately.
Hence, the SampEn will be computed for individual feature
sequence as explained below.

Given Sz, the feature-sequence for the zth feature, p (re-
ferred to as epoch length) a positive integer (p < n) and r
(tolerance) a positive real number, then vectors of length p
can be extracted from Sz as follows: up(i) = {vzi , vzi+1, ...,
vzi+p−1}, where up(i) is the ith vector of length p and 1 ≤
i ≤ n − p + 1. Let kpi (r) be the number of other vectors
up(j) that are close to the vector up(i), i.e., the number of
vectors that satisfy d[um(i), um(j)] ≤ r, where d is the max-
imum absolute difference between their scalar components2,
i 6= j and 1 ≤ i ≤ n − p [12, 32]. The sample entropy for
feature-sequence Sz with n elements, for epoch length p and
tolerance r, is then defined as:

SampEnz(p, r, n) = −ln

n−p∑
i=1

kp+1
i

n−p∑
i=1

kpi

(4)

Thus, for each user u with timelines of length n and for a
fixed tolerance r, we extract the following attributes:

1. SampEnp
z : sample entropy of a feature sequence Sz

for epoch length p,

2. µSampEnp
T : mean sample entropy over all feature se-

quences Sz, z = 1, 2, ...,m of the timeline T for epoch
length p, and

3. σSampEnp
T : standard deviation of sample entropy

over all feature sequences Sz, z = 1, 2, ...,m of the
timeline T for epoch length p.

2 d[up(i), up(j)] = max{|vz(i+t)−vz(j+t)| : 0 ≤ t ≤ p−1}.



k-gram Attributes. The second category of attributes
which we use to characterise a user’s activity patterns are
based on k-grams. A k-gram over a feature-sequence Sz
is a k-length (k > 0) subsequence of consecutive elements
occurring in Sz. k-gram-based attributes have been previ-
ously used for sequence classification [41, 15, 39], biological
sequence analysis [15] and text classification [8].

For a given k, we extract the following three types of k-
gram based attributes from feature-sequences:

1. ηkz : the total number of distinct k-grams in feature se-
quence Sz, normalised by the total number of k-grams
occurring in Sz,

2. µfk
z : the mean frequency of occurrence of distinct k-

grams in the feature sequence Sz, normalised by the
total number of k-grams occurring in Sz, and

3. σfk
z : the standard deviation of the frequency of occur-

rence of distinct k-grams in the feature sequence Sz,
normalised by the length of Sz.

Note that for k = 1, η1mode of transport represents the total
number of distinct modes of transport normalised by the
length of timeline.
k-gram-based features are extracted only for symbolic fea-

ture sequences; in this work, only feature sequences of ac-
tivity names (e.g. modes of transport) are symbolic. This
is because numeric feature sequences, such as duration and
start geolocation, have many distinct k-grams with relatively
low frequencies of occurrence for each. As suggested in [24]
attributes with low frequencies of occurrence should not be
considered for sequence classification. While this problem
can be mitigated to some extent by symbolic approximation
of numeric sequences, the extraction of k-gram features from
such approximations are generally not representative of the
actual statistical properties of the sequence.

4.2 Predicting Optimal Matching Unit Ranges
The classification task is to learn the optimal matching

range, N ′, for each user, where each user is represented
by an attribute vector as described above. For this pur-
pose, matching units are divided into three non-overlapping
ranges, N1, N2 and N3 as shown in Table 1. The optimal
matching unit for each range are set as follows: N ′1 = 1,
N ′2 = 3 and N ′3 = 5. The rationale for the three ranges se-
lected is to model scenarios in which the next activity per-
formed by individual users depends, to a lesser or greater
extent, on their past activity patterns (see Section 5.4 for
examples related to the dataset used in this work).

Opt. matching range (Ni) Opt. matching unit (N ′i)
[0, 1] 1
[2, 4] 3
[5+] 5

Table 1: The three optimal matching ranges N1, N2 and N3

used as target classes for classification and the corresponding
optimal matching units, N ′1, N ′2 and N ′3 for each class.

5. EVALUATION
We first describe the dataset used to construct activity

timelines for users and the experimental methodology em-
ployed. This is followed by an evaluation of the proposed

N -count based recommender and the classification approach
to learn the optimal matching unit range for each user.

5.1 Dataset
Experiments were performed using a subset of GPS tra-

jectory dataset Geolife Trajectories 1.3, obtained from the
Geolife project [49, 51, 52]. In this dataset, each GPS tra-
jectory in the dataset is a sequence of timestamped points,
where each point contains its associated latitude, longitude
and altitude. The complete Geolife dataset involves 182
users and their trajectories are distributed over 30 cities in
China and few cities of USA and Europe. The trajectories
were recorded for a wide range of users’ outdoor movements
such as going home, work, dining, entertainments, shopping
sightseeing and sports activities.

A subset of this trajectory dataset contains labels for the
mode of transport associated with the trajectories. For our
experiments, this subset is used to build activity timelines
for each user. Each activity object in these timelines cor-
respond to an instance of a mode of transport used along
with its associated features extracted from the correspond-
ing list of GPS trajectories. This dataset contains 10 differ-
ent modes of transport, namely, bike, bus, car, subway, taxi,
train, walk, airplane, boat and run. Moreover, each activity
object in the timeline contains the following 7 contextual
features: mode of transport, start-time, duration, distance-
travelled, average altitude, start and end geo-coordinates.
Since the characteristics of the timelines on weekdays and
weekends are different, and since less data is available for
weekends, here we consider data corresponding to weekdays
only. Of this data, a subset of 18 users are selected for
the purpose of evaluation; these are the users for which our
evaluation methodology allows at least 10 opportunities for
recommending the next mode of transport.

Timelines generated from the dataset spanned over 51
days and contained 334 activity objects on average over
users. Figure 3 shows the distribution of the total number
of modes of transport taken per day by each user, while Fig-
ure 4 shows the distribution of the number of distinct modes
of transport (divided by total number) taken per day. It can
be seen that the median number of the total modes of trans-
port per day for users varies between 3–11 (Figure 3), while
the variety of each mode of transport also differs from user to
user as shown in Figure 4. These distributions indicate that
the timelines generated are reasonably rich with a signifi-
cant number of modes of transport per day, and that there
exists significant variety in the modes of transport taken by
different users. For example, the high median value (0.67)
in Figure 4 for user 9 shows that this user chooses diverse
modes of transport, while the median value for user 1 (0.29)
indicates less variety in the modes of transport taken.

Overall, we observe that users take between 2 and 5 dis-
tinct modes of transport per day. These figures are inline
with expectations given the domain under consideration.
Figure 5 shows the percentage of days in which a given mode
of transport is taken at least once by users, and indicates
that while certain activities are common, others are rare.
For example, walk and bus are popular the modes of trans-
port, while airplane, boat and run rarely occur in the data.

Thus, we conclude that the dataset exhibits significant
variation in activity patterns across users and in the modes
of transport taken. Moreover, as shown below, our approach
leads to good recommendation performance across the user
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Figure 3: Distribution of the total number of modes of trans-
port per day for each user.
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Figure 4: Distribution of the number of distinct modes of
transport (divided by total number) per day for each user.

Figure 5: Percentage of days in which each activity occurs
at least once over all users.

base and the modes of transport considered, and is not lim-
ited to instances with particular characteristics in the data.

5.2 Methodology

5.2.1 Recommendation Algorithm
An offline evaluation was conducted for the proposed rec-

ommendation approach. Each user’s complete timeline was
split into training and test timelines, where the test time-
line contained data for the most recent 20% of available
days. For each user, a ranked list of recommended modes of
transport were generated at different recommendation times
(RT), which corresponded to the end time of each activity
object in the test timeline. In each case, the target of rec-
ommendation is the next mode of transport in the timeline.
Recommendation accuracy for each RT is computed as the
reciprocal of the rank position of the target mode of trans-
port in the recommended list. The mean reciprocal rank
(MRR) is then computed over the RTs for each user. Fur-
thermore, in the N -count timeline matching approach, the
matching unit is varied (between N = 0−10) to identify the
observed optimal matching unit for each user.

For the computation of two-level edit distances between

SampEnp
transport−mode SampEnp

start−time

SampEnp
duration SampEnp

distance−travelled

SampEnp
start−geo SampEnp

end−geo

SampEnp
avg−altitude

µSampEnp σSampEnp

η1transport−mode ηktransport−mode

µfk
transport−mode σfk

transport−mode

Table 2: List of attributes extracted from user timelines.
Here, p = 2, 3 and k = 2, 3.

timelines, the following operation costs and feature weights
were used: cins = cdel = 1, and csub = 2 ; wmode−of−transport

= 3, wstart−time = 1, wduration = 0.5, wdistance−travelled =
3, wstart−geocoordinates = 0.3, wstart−geocoordinates = 0.3,
wavg−altitude = 0.2. (See [23] for details on the two-level edit
distance approach.) In the above, the weight associated with
updating the mode of transport (i.e. the activity name such
as bus, walk, taxi, etc.) was set to the highest value since this
is clearly a key consideration when computing distances be-
tween timelines. The value of this weight, along with those
for start time, duration, start/end geolocation and average-
altitude, are set according to their hypothesised importance
from the perspective of comparing timelines.

5.2.2 Learning Optimal Matching Unit Range
The classifier for learning the optimal matching unit range

is evaluated using a leave-one-out cross-validation. Since
each user is represented by an attribute vector extracted
from its timeline, the number of instances is same as the
number of users. Table 2 lists the attributes used to con-
struct the attribute vectors for user timelines. For the com-
putation of sample entropy (SampEn), values of p = 2, 3
are used, since our experiments showed that p > 3 did not
improve the classification results. Similarly, for the k-gram
based attributes, values of k = 2, 3 are also used. The toler-
ance value, r, is set to 0 for the categorical mode of transport
feature sequence 3, while for numeric feature sequences such
as duration, average altitude, etc., r = 0.15× σ, where σ is
the standard deviation of the values in the sequence.

The ground truth for the instances are the three ranges of
matching units, i.e., N1, N2 and N3 determined from the ob-
served optimal matching units over all users (see Table 1 for
the ranges considered). For each user, a subset of the clas-
sification attributes are selected using a wrapper approach
[22], using the C4.5 decision tree induction algorithm [30],
greedy backward search and area under the ROC curve as
the evaluation measure. We use a leave-one-out approach to
generate 18 different training sets for each of the 18 users,
and an internal 10-fold cross validation is performed on each
training set. For simplicity, the same subset of attributes is
selected for all users, i.e. the most common subset which
was found for 12 (of the 18) users in the dataset.

The pruned attribute vectors for each user are then fed
into a C4.5 induction algorithm, which is evaluated using

3Sample entropy is traditionally applied to numeric se-
quences [27]. Here, we also apply sample entropy to symbolic
sequences (i.e. feature sequences of modes of transport) by
assigning a numeric value to each distinct mode of transport
and using a zero tolerance, r = 0. This makes sample en-
tropy independent of the scale and ordinality of the numeric
values assigned to the symbols, thus preserving the seman-
tics of sample entropy in the case of symbolic sequences.
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Figure 6: MRR distribution over all users for the SeqNCRec,
DW ActivRec, OccurRec and DurationRec recommenders.

leave-one-out cross validation. The output of this classifica-
tion gives the matching unit range for each user.

5.3 Recommendation Performance
In order to evaluate the performance of our sequence-

based N -count recommendation algorithm (SeqNCRec), the
following baseline approaches are considered:

• The daywise sequence-based recommender (DW ActivRec)
is the algorithm proposed in our earlier work [23]. This
approach uses the same two-level distance metric to
compare timelines, however it uses a daywise match-
ing of timelines as described in Section 3.3.2.

• The high occurrence recommender (OccurRec) assumes
that the best modes of transport are those which are
taken most often. Thus for each user, it recommends
modes of transport in decreasing order of how often
they are taken by that user in the training set.

• The high duration recommender (DurationRec) assumes
that the best modes of transport are those in which
users spend most of their time. Thus for each user, it
recommends modes of transport in decreasing order of
the time spent in them by that user in the training set.

For this comparison, the MRR values for SeqNCRec are
obtained using the observed optimal matching units for each
user. Figure 6 shows the distribution of MRR over all users
using SeqNCRec and the three baseline approaches described
above. The results show that SeqNCRec approach outper-
forms the other three baselines for the majority of users.
The median MRR is 19%, 10% and 13% higher when using
SeqNCRec compared to the baseline DW ActivRec, Occur-
Rec and DurationRec approaches, respectively.

Figure 7 shows the MRR values for each user individually
using the proposed SeqNCRec algorithm. It is clear that
good MRR values are obtained for all users with a high mean
(0.81) over all the users. Moreover, comparing these results
with the median number of distinct activities per day in
Figure 4, it can be seen that the recommendation algorithm
also performs well for those users which have a high degree
of variety in their transport patterns, which is clearly an
important finding. For example, the MRR for user 9 exceeds
that for user 12, although user 9 has a much greater variety
in the modes of transport taken in comparison to user 12.

We also compare performance of the SeqNCRec recom-
mender across the different modes of transport, i.e. when
each mode of transport represented the target activity for
recommendation. Figure 8 shows the distribution of mean
reciprocal ranks grouped by the target mode of transport.
Comparing these results with Figure 5, which shows the pop-
ularity of transport modes, it can be seen that the recom-

mendation algorithm is not limited to making just the “ob-
vious” recommendations. For example, the recommendation
performance is similar on average for bus, bike and car (all
have the same median MRR), even though bus is a more
popular mode of transport compared to bike and car.

5.4 Classification Performance
In the above, results for the SeqNCRec recommender

were obtained using the observed optimal matching unit for
each user; i.e. the value of N (using N -count matching)
which achieved the best MRR for each user was selected.
Here, we consider the classification approach as described in
Section 4 to learn the optimal matching unit for each user.

We begin by motivating the choice of matching unit ranges
used in this work. Figure 9 shows the observed optimal
MRR for three representative users against matching unit
using the SeqNCRec algorithm. The results show different
trends for each of these users. For example, the greatest
MRR value is achieved for user 12 at a matching unit of 0
(i.e., using only the current activity object), which decreases
as the matching unit increases. In contrast, MRR for user 5
peaks at a matching unit of 2 and declines thereafter, while
the MRR for user 4 peaks later at matching unit equal to 5.
As different users will have different activity patterns, it is
not surprising that their MRR varies with matching unit. As
such, these results confirm the need to learn optimal match-
ing units for each user. However, since users will naturally
exhibit variation in their activity patterns, here we adopt
the approach of learning optimal matching unit ranges, and
choosing a fixed matching unit value from within each range.

We now turn to the performance achieved by the matching
unit range classifier. Using a ground truth based on observed
optimal matching units, the number of instances (users) in
each of the three classes N1, N2 and N3 were 8, 6 and 4, re-
spectively. Using the wrapper approach for attribute subset
selection, attributes SampEn2

duration, SampEn2
avg−altitude

and µSampEn3 were selected to build the decision trees for
each user. Figure 10 shows the results using a leave-one-out
cross-validation approach. As can be seen, good classifica-
tion performance is achieved across all three classes, with
weighted precision and recall both equal to 0.78.

While the above classification results are promising, the
main test of this approach is whether the matching units N ′i
associated with each predicted range N ′i lead to high quality
recommendations for users. The results show that generally
only small differences in MRR are seen; the mean reduction
in MRR is 3.1%, with a standard deviation of 5.3%. Thus,
we can conclude that our classification approach learns per-
sonalised matching units for users (in the domain consid-
ered) sufficiently well from a recommendation perspective.

Figure 7: MRR achieved for each user by the SeqNCRec
recommender using observed optimal matching units.
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target activity across all users using the
SeqNCRec recommender.

Figure 9: MRR versus matching
unit (N -count) for three representa-
tive users.

Figure 10: Precision/recall for target
classes N ′1, N ′2 and N ′3.

6. CONCLUSIONS AND FUTURE WORK
In this work we have proposed a content-based approach

to recommend the next mode of transport to users in which
sequence-based modeling is used to capture the order as
well as the context associated with user activities. We in-
troduced a timeline matching approach for generating these
sequence-based recommendations. A classification approach
to learn the personalised optimal matching units for users
was also proposed. Evaluations using a real-world dataset
show good results from a recommendation perspective and
for the matching unit learning approach.

There is rich scope for future work in this area. For ex-
ample, the current work does not take into account socio-
economic characteristics and user demographics, and travel
variables such as car ownership, bus/train availability and
other urban settings, which are also important [10] for trans-
port choice. Moreover, the issue of scalability when dealing
with large-sized datasets is an important consideration; in
this regard, one possible solution is to limit (based on re-
cency, day, or time) the number of candidate timelines used
when making recommendations. Our approach also lends
itself to more sophisticated recommendation scenarios — in-
stead of simply suggesting the next activity to users, a se-
quence of activities, along with associated contextual data,
can be recommended (for example, suggesting a sequence
of tourist attractions to users, and when and with whom
they can be visited). Finally, a hybrid approach to recom-
mendation can also be considered by, for example, applying
a collaborative filtering algorithm in conjunction with the
current content-based approach, which can alleviate sparsity
issues [42] and further improve recommendation quality.
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